
DOI 10.1007/s10898-005-1649-y
Journal of Global Optimization (2006) 34: 551–567 © Springer 2006

A Class of Inverse Dominant Problems under
Weighted l∞ Norm and an Improved Complexity
Bound for Radzik’s Algorithm∗

QIN WANG1, XIAOGUANG YANG2,† and JIANZHONG ZHANG3

1Department of Mathematics, China Jiliang University, Hangzhou 310018, P. R. China
2Institute of Systems Science, Chinese Academy of Sciences, Beijing 100080, P. R. China
3Department of Mathematics, City University of Hong Kong, Hong Kong, P. R. China

(Received 27 May 2003; accepted 27 July 2005)

Abstract. In this paper, we first discuss a class of inverse dominant problems under weighted
l∞ norm, which is how to change the original weights of elements with bounds in a finite
ground set so that a given set becomes a weakly dominant set with respect to a given col-
lection of subsets under the new weights and the largest change of the weights is minimum.
This model includes a large class of improvement problems in combinatorial optimization.
We propose a Newton-type algorithm for the model. This algorithm can solve the model in
strongly polynomial time if the subproblem involved is solvable in strongly polynomial time.
In the second part of the paper, we improve the complexity bound for Radzik’s Newton-type
method which is designed to solve linear fractional combinatorial optimization problems. As
Radzik’s method is closely related to our algorithm, this bound also estimates the complexity
of our algorithm.

Key words: dominant set, improvement problem, inverse problem, linear fractional combi-
natorial optimization, polynomial time algorithm

1. Introduction

Since Burton and Toint published their paper on an instance of the inverse
shortest paths problem [2], there has been a number of papers concerning
inverse optimization problems. Heuberger gave a comprehensive survey on
the subject [5]. Typically, an inverse optimization problem is to modify the
coefficients of the objective function such that a given solution becomes
an optimal one under the modified coefficients and the deviation of the
modified coefficients from the original ones is minimized. For example, the
inverse minimum spanning tree problem is to change the lengths of edges
in a network as little as possible so that a given spanning tree T ′ becomes

∗Supported by the Hong Kong Universities Grant Council (CERG CITYU 9040883 and 9041091).
†The author is also grateful for the support by the National Key Research and Development Pro-

gram of China (Grant No. 2002CB312004) and the National Natural Science Foundation of China
(Grant No. 70425004).

552 Q. WANG ET AL.

the minimum length spanning tree under the revised lengths. The frequently
used measurements for minimum deviation (or minimum cost) in handling
such problems are l1, l∞ and l2 norms of the deviation vector. Under
weighted l∞ norm, Zhang and Liu proposed a general model for inverse
combinatorial optimization problems by introducing a concept “dominant
set” (we refer it as “strongly dominant set” in this paper) [10]. They proved
that many inverse optimization problems are special cases of this model,
such as inverse spanning tree problem, inverse maximum weight matching
problem, inverse minimum cost flow problem, etc.

Recently, a type of closely related problems also attracted much atten-
tion which requests us to change the coefficients of the objective function
as little as possible under certain measurement, such that the optimal value
under the modified coefficients is not greater (or less) than a given level. To
make the terminology clear, we call such a problem an improvement prob-
lem. For example, a spanning tree improvement problem is to change the
lengths of edges in a network as little as possible so that the total length of
the minimum spanning tree under the new length vector is upper bounded
by a given value c.

Under l1 norm, Burton et al. [1], Fekete et al. [3], and Zhang and Lin
[9] considered the shortest path improvement problem which is to modify
the weights minimally such that distances between some given node pairs
are within required upper bounds. They showed that this shortest path
improvement problem is NP-hard, and therefore, only some special cases
can be solved polynomially. Note that what they discussed is the multi-
objective case, i.e., the lengths between several pairs all meet given bounds.
If we consider only one objective, say the distance between one pair of
nodes, or the total weight of a spanning tree, then the improvement prob-
lem would be relatively easier to solve. However, if bound restrictions on
the modification of weights are imposed, then even for some simple opti-
mization problems, such as the shortest path problem, the minimum span-
ning tree problem, the assignment problem and the minimum cut problem,
their l1-norm improvement problems are still NP-hard.

Under weighted l∞ norm, it appears that some improvement problems
cannot be handled by Zhang and Liu’s model in [10]. In this paper, we pro-
pose a new dominant relationship: weakly dominant set. The new model
includes a class of improvement problems under weighted l∞ norm. We dis-
cuss the solvability of the new model under bound restrictions. We show
that this new model can be solved in strongly polynomial time if the sub-
problem involved in the computation is solvable in strongly polynomial
time for any fixed value of the parameter which appears in the subproblem.

The core algorithm for solving this model can be considered as a dis-
crete type Newton method, which shares the same properties with Radzik’s
algorithm [8]. Radzik’s algorithm is designed for solving linear fractional

CLASS OF INVERSE DOMINANT PROBLEMS 553

combinatorial optimization (LFCO) problems. Radzik gave a strongly
polynomial bound, O(p2 log2

p), for his method, where p is the size of
input. In the second part of our paper, we prove that the complexity
bound of Radzik’s algorithm can be improved to O(p2 log p). This implies
that Radzik’s algorithm as well as our algorithm run faster than expected
before.

In Section 2, we will describe the general model under weighted l∞ norm
and propose an algorithm for solving the model. Then in Section 3, we
will discuss how to improve the complexity bound of Radzik’s method.
Throughout the paper, for a set F , we use |F | to represent its cardinality.

2. A General Model for a Class of Inverse Dominant Problems and the
Solution Procedure

Let E = {e1, e2, . . . , en} be a finite ground set and each element ei ∈ E be
associated with a non-negative weight w(ei). Let F be a family of subsets
of E, (S, S̄) be a given partition of E (the special cases that S =E or S =∅
are allowable). For each F ∈F we define a deficiency of F with respect to
w as

dw(F)=
∑

e∈F∩S̄

w(e)−
∑

e∈F∩S

w(e).

Let c be a given real value. In [10], S is called a dominant set with respect
to F under w if dw(F)�c for all F ∈F . We may refer to so defined dom-
inant set as a strongly dominant set. Zhang and Liu [10] considered an
inverse model that is how to make a given set S become a strongly dom-
inant set by adjusting the weights of ei in the ground set. They showed
that a large class of inverse combinatorial problems under l∞ norm can be
embedded into this model.

In this paper, we consider a new dominant relationship, weakly dominant
set. It can be defined as follows.

DEFINITION 2.1. Let (S, S̄) be a given partition of E. For each F ∈ F
a deficiency dw(F) with respect to w is defined as above, and if there is
an F ∈F such that dw(F)� c, then S is called a weakly dominant set with
respect to F under w.

Similar to the problem discussed in [10], we define an inverse (weakly)
dominant problem as follows: if the given S is not a weakly dominant set
with respect to F under w, we want to change the weight vector w as little
as possible such that S becomes a weakly dominant set under the changed
weight vector w̄.

554 Q. WANG ET AL.

The ‘minimum change’ in vector w is characterized in this paper by a
weighted l∞ norm, and we also impose bound restrictions on the change
(increase or decrease) of w. To say more formally, let b: E → R+ be a bou-
nd function by which the changes of w are restricted (assume b �w), and
let p: E → R+ be the cost vector for per unit of change in w, the inverse
dominant problem under weighted l∞ norm can be stated as follows.
(IP) Find an adjusted weight vector w̄ �0 such that

(a) the solution Fw̄ of the minimization problem OP(w̄) below meets the
condition dw̄(Fw̄)� c,

(b) |w(e)−w(e)|�b(e) for each e∈E, and
(c) the modification cost ‖w − w‖(p)

∞ := max{p(e)|w(e) − w(e)| | e ∈ E} is
minimum, where the minimization problem is

(OP(w)) min{dw̄(F) | F ∈F}.
We now present an example of the inverse dominant problem (IP). Sup-

pose that in a telecommunication network each link is represented by an
edge, and a company has already possessed some links in the network. Let
us denote this set of links by S and call them old links. Now the company
wants to improve its utility by selling some old links and buying some new
links from S̄. For each e ∈E =S ∪ S̄, let w(e) be the estimate price of the
link. Let c be the available budget for the purpose. A prerequisite require-
ment of the company is to cover all nodes of the network, that is, the set of
links which the company shall own after the trade should contain a span-
ning tree. This problem can be formulated as a weakly dominant relation-
ship:

Let T be the set of all spanning trees. For each T ∈T , define the sym-
metric difference of T and S by F(T)= (T \S)∪ (S\T). Let F ={F(T)|T ∈
T }. For each F(T)∈F , consider the deficiency of F(T),

dw(F (T)) =
∑

e∈F(T)∩S̄

w(e)−
∑

e∈F(T)∩S

w(e)

=
∑

e∈T ∩S̄

w(e)−
∑

e∈S\T
w(e).

The first sum on the right-hand side is the total expenditure spent on buy-
ing new links, while the second sum is the total return by selling unneces-
sary old links, i.e., the old links out of T . Therefore dw(F (T)) is the net
cost under the constraint that the company should possess all links in T .
The weakly dominant relationship in fact reflects that under its budget lim-
itation, the company is able to have a spanning tree of links after a trade.

The weakly dominant model can be used for another purpose. Note that
−dw(F (T)) = ∑

e∈F(T)∩S w(e) − ∑
e∈F(T)∩S̄ w(e) is the total gain from the

selling–buying activity. Assume that the company has a profit goal, say p.

CLASS OF INVERSE DOMINANT PROBLEMS 555

Let c=−p<0. Then dw(F (T))� c is equivalent to −dw(F (T))�p. In this
case, the weakly dominant relationship means that the company can make
profit p or more by selling some old links and purchasing some new links,
meanwhile let the owned links still contain a spanning tree.

Now consider the inverse problem. Suppose that under the estimated
prices {w(e)|e∈E}, S is not a weakly dominant set with respect to F , i.e.,
the company cannot get a spanning tree of links under the budget con-
straint. So, the company tries to set some marketing strategy to realize
its goal, that is, to decide a set of targeted buying/selling prices w′ with
which to negotiate with its business counterparts. Obviously, w′ cannot be
too big or too small, and should meet some bound constraints: |w(e) −
w′(e)|� b(e), where b is a given bound vector. Obviously, a realistic mar-
keting strategy is that instead of changing prices of only a small part of
edges but with large amounts, one should consider a balanced price change
on some edges, even if more edges would be involved. This means that an
ideal adjustment is to make the maximum change minimal. Therefore, a
reasonable model should determine w′ as a solution of the problem

min max
e∈E

|w(e)−w′(e)|
s.t. min{dw′(F)|F ∈F}� c,

|w(e)−w′(e)|�b(e), e∈E,

which is just a special case of problem (IP) when all p(e) are equal. Note
that the first constraint asks S to become a weakly dominant set under w′.

We note that:

(1) The model (IP) in this paper is different from the model in [10]. Let
us take the minimum spanning tree problem as an example. If we let
F be the set of all spanning trees and choose S = ∅, then this paper
deals with the minimum spanning tree improvement problem which is
how to modify the weights by minimum cost such that the length of
the minimum spanning tree is within a given level c. While [10] con-
siders how to make minimum change for the weight vector such that
a given spanning tree (which is not the minimum one under the orig-
inal weight) becomes a minimum spanning tree under the new weight.
Obviously neither one can include the other model as a special case.

(2) Generally speaking, our problem in this paper is an inverse problem:
to make a given set S which is not a dominant one become a domi-
nant set, but on the other hand by the definition of weak dominance,
this problem can also be regarded as an improvement problem: make
a minimum cost change in weight such that we are able to find a sub-
set F̄ in F which makes the objective value under the new weight vec-
tor w, i.e., dw(F̄), be upper bounded by a given value c. As we can

556 Q. WANG ET AL.

define different F and S and set different values for c, the model of
this paper can include various improvement problems.

(3) The algorithm for solving the model in [10] may yield negative weights.
In this paper, as we impose bound restrictions, the model can avoid the
negative weight case.

We now consider how to solve problem (IP). Let

ŵ(e)=
{

w(e)+b(e) for e∈S,

w(e)−b(e) for e∈ S̄.

Then the inverse dominant problem is feasible if and only if dŵ(Fŵ) � c.
Moreover, if dw(Fw)�c, it is clear that we need not change any weight. In
the sequel, we always assume that dŵ(Fŵ)� c and dw(Fw)>c.

For any non-negative real number r, define a modified weight function
as

wr(e)=
{

min{w(e)+ r
p(e)

, ŵ(e)} for e∈S,

max{w(e)− r
p(e)

, ŵ(e)} for e∈ S̄.

Clearly, the modification cost of wr(e) under weighted l∞ norm is bounded
by r: ‖wr −w‖(p)

∞ � r. In other words, if the budget is r, then the best we
can do is to adjust w to wr . It is intuitive that the (IP) under weighted l∞
norm is equivalent to finding a minimum r∗ such that

dwr∗ (Fwr∗)= c. (1)

Suppose we have an algorithm A to solve the problem (OP(w′)) for a fixed
weight vector w′ (problem (OP(w′)) is defined by replacing w in problem
(OP(w)) by w′). In this section, we will design a general solution procedure
for solving problem (IP). The procedure can be divided into two phases.

Phase 1. Phase 1 consists of two steps. For each e∈E, write the weighted
bound b̃(e) = p(e)b(e). Let b̃0 = 0. The first step in Phase 1 is to sort the
elements in a strictly increasing order according to the weighted bounds
{b̃(e)}, say b̃0 <b̃1 <b̃2 < · · ·<b̃m (m� |E|).

It is straightforward to see that wb̃m
(e) = ŵ(e) for each e ∈ E. By the

assumption that dŵ(Fŵ)� c, i.e. dwb̃m
(Fwb̃m

)� c, we have r∗ � b̃m.

CLASS OF INVERSE DOMINANT PROBLEMS 557

We claim that

THEOREM 2.1. If dwb̃k−1
(Fwb̃k−1

) > c and dwb̃k
(Fwb̃k

) = c for some k(1 � k �
m), then r∗ = b̃k.

Proof. It is straightforward to see that b̃k−1 <r∗ � b̃k since dwb̃k−1
(Fwb̃k−1

)>

c and dwb̃k
(Fwb̃k

)= c.

Let E− ={e∈E | b̃(e)� b̃k}. We claim that Fwr∗ ∩E−
=∅. For otherwise,
for every e∈Fwr∗ we would have b̃(e)� b̃k−1 <r∗, which implies that

wr∗(e)=wb̃k−1
(e) for each e∈Fwr∗ .

Hence, we have

dwb̃k−1
(Fwb̃k−1

)�dwb̃k−1
(Fwr∗)

=dwr∗ (Fwr∗)= c.

This is a contradiction with the assumption dwb̃k−1
(Fwb̃k−1

)>c. So, Fwr∗ ∩E−
=∅.

For any r ′ and r such that b̃k−1 � r ′ < r � b̃k, it is easy to see that, for
each e∈E−, wr ′(e)<wr(e) for e∈S; and wr ′(e)>wr(e) for e∈ S̄. Therefore
for any F ∈F such that F ∩E−
=∅, we have dwr′(F)>dwr

(F).
Now if r∗ < b̃k, we obtain that c = dwr∗(Fwr∗) > dwb̃k

(Fwr∗) � dwb̃k
(Fwb̃k

),

contradicting the assumption dwb̃k
(Fwb̃k

)=c. Therefore, r∗ <b̃k is impossible,

and we must have r∗ = b̃k.

The second step in Phase 1 is to use the binary search technique to find
a k, 1�k �m, such that dwb̃k−1

(Fwb̃k−1
)>c and dwb̃k

(Fwb̃k
)� c.

If dwb̃k
(Fwb̃k

) = c, we have r∗ = b̃k by Theorem 2.1, and hence the opti-

mal solution has already been obtained. Otherwise we have b̃k−1 <r∗ <b̃k.
In this case, we should go to the next phase.

Phase 2. The computation of Phase 2 can be described as the following
algorithm.
Algorithm:

Step 0. Set r̄ = b̃k.
Step 1. Let δ = c−dwr̄

(Fwr̄
)

µ(Fwr̄
∩E−)

, and update r = r̄ − δ, where µ(e)= 1
p(e)

for each
e∈E, and µ(X)= ∑

e∈X

µ(e) for any subset X ⊂E.

Step 2. If dwr
(Fwr

)= c, stop, and the optimal solution is w̄(e)=wr(e) for
all e∈E.

Step 3. Otherwise let r̄ = r, go to Step 1.

Let us check the validity of the algorithm.

558 Q. WANG ET AL.

First, we claim that the algorithm is well-defined. To this purpose we
need to show that the following four conclusions are true at Step 1:

(a) dwr̄
(Fwr̄

)<c,
(b) Fwr̄

∩E−
=∅,
(c) b̃k−1 <r < r̄ � b̃k,
(d) dwr

(Fwr
)� c.

In fact for the first time to execute Step 1, which directly follows Step
0 with r̄ = b̃k, dwr̄

(Fwr̄
)= dwb̃k

(Fwb̃k
)< c. Since r̄ > b̃k−1, we can prove Fwr̄

∩
E−
=∅ using the method shown in Theorem 2.1, but replacing r∗ there by
r̄. In other words, in the first iteration, (a) and (b) hold.

In what follows, we show that when (a) and (b) hold, (c) and (d) also
hold in the same iteration; and when (c) and (d) are true, (a) and (b) in
the next iteration are also true if the computation does not stop.

When (a) and (b) hold, δ > 0 and r < r̄ � b̃k. To prove (c) it suffices to
show that r > b̃k−1. By (a), dwr̄

(Fwr̄
)<dwb̃k−1

(Fwb̃k−1
), and hence r̄ > b̃k−1. So,

for each e∈Fwr̄
\E−, we have

wb̃k−1
(e)=

{
w(e)+b(e) for e∈S,

w(e)−b(e) for e∈ S̄,

=wr̄(e).

Note that dwb̃k−1
(Fwr̄

)�dwb̃k−1
(Fwb̃k−1

)>c. So,

dwr̄
(Fwr̄

\E−)+dwb̃k−1
(Fwr̄

∩E−)=dwb̃k−1
(Fwr̄

\E−)+dwb̃k−1
(Fwr̄

∩E−)

=dwb̃k−1
(Fwr̄

)>c. (2)

On the other hand, by the definition of δ, we have

dwr̄
(Fwr̄

)+µ(Fwr̄
∩E−)δ = c. (3)

For each e∈E−, as b̃(e)� b̃k � r̄ > r, we have

wr̄(e)=
{

wr(e)+ δµ(e) if e∈S,

wr(e)− δµ(e) if e∈ S̄.
(4)

So,

dwsr̄
(Fwr̄

∩E−)+µ(Fwr̄
∩E−)δ =dwr

(Fwr̄
∩E−). (5)

By (2), (3), and (5), we get

dwb̃k−1
(Fwr̄

∩E−)>dwr
(Fwr̄

∩E−). (6)

CLASS OF INVERSE DOMINANT PROBLEMS 559

We obtain from (6) that

r > b̃k−1. (7)

So, (c) holds.
Moreover, since r > b̃k−1, for each e∈Fwr̄

\E−, we know that b̃(e)<r < r̄,
and hence wr(e) = wr̄(e). Using this result and Equations (3) and (5), we
obtain

dwr
(Fwr̄

)=dwr
(Fwr̄

\E−)+dwr
(Fwr̄

∩E−)

=dwr
(Fwr̄

\E−)+ c−dwr̄
(Fwr̄

\E−)

= c. (8)

Therefore,

dwr
(Fwr

)�dwr
(Fwr̄

)= c, (9)

i.e., (d) is also true.
We now prove (a) and (b) for the next iteration from (c) and (d). If Step

1 follows Step 3 of the previous iteration, i.e., r̄ is equal to the last r, then
by (9) and Step 2 we have dwr̄

(Fwr̄
)< c, that is, (a) holds for the r̄. Also,

by (7) we have b̃k > r̄ > b̃k−1. Using the same arguments shown in Theorem
2.1, we can deduce (b) for this r̄. So, we proved all four conclusions and
hence the algorithm is well-defined.

Second, we claim that the algorithm has the following two properties:

(e) c−dwr (Fwr)

c−dwr̄
(Fwr̄

)
+ µ(Fwr ∩E−)

µ(Fwr̄
∩E−)

�1, and

(f) µ(Fwr
∩E−)<µ(Fwr̄

∩E−) and dwr
(Fwr

)>dwr̄
(Fwr̄

).

In fact, c − dwr̄
(Fwr̄

) � c − dwr̄
(Fwr

) = c − dwr
(Fwr

) + dwr
(Fwr

) − dwr̄
(Fwr

) =
c−dwr

(Fwr
)+µ(Fwr

∩E−)δ =c−dwr
(Fwr

)+µ(Fwr
∩E−)

c−dwr̄
(Fwr̄

)

µ(Fwr̄
∩E−)

. Therefore
(e) is proved.

(f) follows (a), (d), and (e) directly.
Note that in [10], the problem is reduced to finding a w such that

max
F∈F

{dw(F)−λb(F)}= c,

where b(F) is similar to µ(F) in this paper. When λ=λk, the algorithm of
[10] solves the problem

max
F∈F

{dw(F)−λkb(F)},

obtains the optimal solution and the optimal value Fk and hk, respectively,
and then updates λk to obtain λk+1. In their convergence proof, the authors

560 Q. WANG ET AL.

of [10] first showed that their iterative sequences {λk}, {Fk}, and {hk} have
the following five properties:

(i) hk >c,
(ii) λk+1 −λk = hk−c

b(Fk)
,

(iii) λk+1 >λk,

(iv) hk+1−c

hk−c
+ b(Fk+1)

b(Fk)
�1,

(v) b(Fk+1)<b(Fk) and hk+1 <hk.

These five properties are in fact just what Radzik [8] required for proving
the finite convergence of his method. Therefore, Zhang and Liu obtained
their convergence theorem immediately after establishing the above five
properties.

Using our results (a)–(f), it is easy to see that Phase 2 of our algo-
rithm also has the five properties (corresponding to (i)–(v) of [10]). In fact,
dwr̄

(Fwr̄
) < c corresponds to (i); δ(= r̄ − r) = c−dwr̄

(Fwr̄
)

µ(Fwr̄
∩E−)

corresponds to (ii);
dwr̄

(Fwr̄
)<c together with Fwr̄

∩E−
=∅ imply that δ>0, which corresponds
to (iii); c−dwr (Fwr)

c−dwr̄
(Fwr̄

)
+ µ(Fwr ∩E−)

µ(Fwr̄
∩E−)

� 1 corresponds to (iv); finally, µ(Fwr
∩E−)<

µ(Fwr̄
∩ E−) and dwr

(Fwr
) > dwr̄

(Fwr̄
) correspond to b(Fk+1) < b(Fk) and

hk+1 < hk, i.e. (v). The only difference is that the subproblem of [10] is a
maximization problem, while in this paper the subproblem is a minimi-
zation problem, and hence the corresponding inequalities and expressions
change directions.

So, following the argument in [10], we know that Radzik’s proof for con-
vergence is still valid in our case, i.e., the algorithm terminates at an r

which meets the equation dwr
(Fwr

) = c, and hence is the optimal solution
of the (IP).

Combining the above analysis, we can conclude that

THEOREM 2.2. The algorithm in Phase 2 terminates after a finite number
of iterations with an optimal solution for the (IP). The number of iterations
is the same as the number of iterations of Radzik’s algorithm.

Note that Theorem 2.2 can be proved directly. But the above reason-
ing shows the close relationship between our algorithm and the Radzik’s
method. Radzik gave an estimate to the required number of iterations for
his method, and in Section 3, we will give an improved estimate to Rad-
zik’s algorithm. Of course this estimate for the number of iterations is
also available to our algorithm due to the second conclusion of the above
theorem.

CLASS OF INVERSE DOMINANT PROBLEMS 561

3. An Improved Bound for a Newton Type Method to Solve LFCO
Problems

In [8], Radzik considered the class of LFCO problems. An LFCO problem
L can be expressed as

L : max
a(1)x(1)+a(2)x(2)+· · ·+a(p)x(p)

b(1)x(1)+b(2)x(2)+· · ·+b(p)x(p)
, (10)

subject to x = (x(1), x(2), . . . , x(p))∈X , (11)

where a = (a(1), a(2), . . . , a(p)), b= (b(1), b(2), . . . , b(p)), and X ⊆{0,1}p.
The problem bears the following meaning. Suppose we consider a

ground set E of p elements {e1, e2, . . . , ep}, and for each subset F of E,
define xF (e) = 1 if element e ∈ F and xF (e) = 0 otherwise, and call xF the
characteristic vector of F . Furthermore, let a(i) and b(i) be the profit and
weight of element ei , respectively, and express the inner product c(1)z(1)+
c(2)z(2) + · · · + c(p)z(p) of two vectors c = (c(1), c(2), . . . , c(p)) and z =
(z(1), z(2), . . . , z(p)) by cz. Then, numbers axF , bxF , and axF /bxF are,
respectively, the profit, weight, and mean-weight profit of the subset F .
Under such a setting, problem L becomes to find a subset F that maxi-
mizes the mean-weight profit.

In problem L, we assume that ax >0 for some x ∈X , and bx >0 for all
x ∈ X , but there may be some vector x ∈ X with non-positive product ax

and some components of b with non-positive b(i). Problem L can be equiv-
alently formulated in the following way.

P : minimize δ, subject to (ax)− δ(bx)�0 for all x ∈X . (12)

We call P the parametric version of L and let δ∗ be the optimal solution
(and optimal value) to problem P . If we define

h(δ) =max{(ax)− δ(bx) | x ∈X }
=max{(a − δb)x | x ∈X },

then we have another equivalent formulation for problem L:

R : solve h(δ)=0. (13)

Function h(δ) is convex, piecewise linear, and decreasing, and the optimal
solution δ∗ to problem P is its only root. Note that due to (1), our prob-
lem (IP) in Section 2 can also be expressed as a root-finding problem for
a combinatorial equation h̄(r)= c, where

562 Q. WANG ET AL.

h̄(r)=min{wrxF | xF ∈XF },

and vector wr was defined before,

xF (e)=
⎧
⎨

⎩

1, e∈F ∩ S̄,

−1, e∈F ∩S,

0, otherwise

and XF is the set of characteristic vectors xF for all F ∈ F . So, the two
problems are closely related in nature.

Radzik [8] proposed a method for computing the root δ∗ of h(δ). It can
be described formally as follows.
Radzik’s algorithm for LFCO:

Step 0: Set δ̄ =0.
Step 1: Maximize the linear function (a − δb)x over X and obtain the

maximizer x̄.
Step 2: If h(δ)=0, then the root δ∗ = δ and the algorithm terminates.
Step 3: Otherwise let δ =ax/bx, go to Step 1.

The method is in fact a discrete type Newton method because if h(δ)
=0,
then we use the following idea to find δ+δ which is an approximate root
to the equation h(δ)=0:

h(δ +δ)=max
x∈X

(a − (δ +δ)b)x

≈ (a − (δ +δ)b)x̄

=0, (14)

i.e.,

δ +δ = ax̄

bx̄

and let this δ+δ be the next iterative point. Note that in (14) we suppose
the maximum is reached at x̄ because it is true when δ = δ̄, and we assume
δ is small.

Note that by the same idea but with a bit more complicated analysis, we
can see that our algorithm in Phase 2 is in fact also a discrete type Newton
algorithm.

Next, we prove that Radzik’s algorithm has a better complexity bound
than what is given in [8].

Let δi be the value of δ at the beginning of the ith iteration, and
xi, hi, fi , and gi be, respectively, vector x and scalars (a − δib)x, ax, and
bx from this iteration. Thus

CLASS OF INVERSE DOMINANT PROBLEMS 563

hi = (a − δib)xi =max{(a − δib)x | x ∈X }
=fi − δigi,

δi+1 = axi

bxi

= fi

gi

. (15)

It is easy to see that

δi+1 − δi = hi

gi

.

[8] also proved that

hi+1

hi

+ gi+1

gi

�1

and the iterations terminate finitely. Let t be the index of the last iteration.
Then it was shown in [8] that

h1 >h2 > · · ·>ht−1 >ht =0,

0= δ1 <δ2 < · · ·<δt−1 <δt = δ∗,

g1 >g2 > · · ·>gt−1 �gt .

Radzik proved the following complexity bound for the Newton type
method.

THEOREM 3.1 ([8]). The Newton type method applied to an LFCO prob-
lem finds the optimal solution in O(p2 log2

p) iterations.

We find that actually the above complexity bound for the Newton type
method can be improved. Our improvement is based on a result given by
the next theorem which is due to Goemans in a private communication
with Radzik [8].

THEOREM 3.2 ([8]). Let c = (c(1), c(2), . . . , c(p)) be a vector with non-
negative real coordinates. Let y1, y2, . . . , yq be vectors from {−1,0,1}p. If for
all i =1,2, . . . , q −1,

0<yi+1c� 1
2yic,

then q =O(p log p).

564 Q. WANG ET AL.

Below we first use this theorem to estimate the number of times that
make hk+1 � (1/2)hk in using the Newton type method for solving the
LFCO problem.

THEOREM 3.3 When the problem R is solved by the Newton type method,
there are at most O(p log p) iterations k such that hk+1 � (1/2)hk.

Proof. Let k1 <k2 < · · ·<kq be all indices of k such that hk+1 � (1/2)hk.
As for each k,

hk+1

hk

+ gk+1

gk

�1,

we have

0<gki+1 � 1
2gki

. (16)

As {gi} is decreasing, gki+1 �gki+1, and hence (16) means

0<gki+1 � 1
2gki

,

i.e.,

0<bxki+1 � 1
2bxki

. (17)

If we define vector c= (c(1), c(2), . . . , c(p)) as

c(j)=|b(j)|

for j =1,2, . . . , p, and define vectors yi (i =1,2, . . . , q) as

yi(j)= sign(b(j)) ·xki
(j)

for j = 1,2, . . . , p, then c must be a non-negative vector and each vector
yi ∈{−1,0,1}p. Moreover,

bxki
=yic, i =1,2, . . . , q.

So (17) means

0<yi+1c� 1
2yic.

Now by Theorem 3.2 we know that q = O(p log p). The proof is
completed.

We now estimate the number of times to have hk+1 � (1/2)hk.

CLASS OF INVERSE DOMINANT PROBLEMS 565

THEOREM 3.4 When the problem R is solved by the Newton type method,
there are at most O(p2 log p) iterations k such that hk+1 � (1/2)hk.

Proof. Let k1 <k2 < · · ·<kq be the indices of k such that hk+1 � (1/2)hk.
We have

hi =fi − δigi =fi − fi−1

gi−1
gi.

As {hi} is decreasing, we know that

hki+1 �hki+1 � 1
2hki

,

which means

fki+1 − fki+1−1

gki+1−1
gki+1 � 1

2

(
fki

− fki−1

gki−1
gki

)
. (18)

As {gi} is decreasing, gki−1 >gki+1−1 >0. So, from (18) we obtain

fki+1gki+1−1 −fki+1−1gki+1 � 1
2(fki

gki−1 −fki−1gki
).

Putting si =fki
gki−1 −fki−1gki

, we have that for each i =1,2, . . . , q,

0<si+1 � 1
2si .

Let

�i ={j | xki
(j)=1}

and

�′
i ={j | xki−1(j)=1}.

Then

si =axki
bxki−1 −axki−1bxki

=
⎛

⎝
∑

j∈�i

a(j)

⎞

⎠

⎛

⎝
∑

l∈�′
i

b(l)

⎞

⎠−
⎛

⎝
∑

l∈�′
i

a(l)

⎞

⎠

⎛

⎝
∑

j∈�i

b(j)

⎞

⎠

=
p∑

j,l=1

zjla(j)b(l)+
p∑

j,l=1

z′
lj a(l)b(j),

566 Q. WANG ET AL.

where zjl = 1 and z′
lj =−1 if j ∈�i and l ∈�′

i , and zjl = z′
lj = 0 otherwise.

We choose c as a 2p2-dimensional vector:

(|a(1)b(1)|, |a(1)b(2)|, . . . , |a(1)b(p)|, |a(2)b(1)|, |a(2)b(2)|, . . . , |a(p)b(p)|,
|a(1)b(1)|, |a(1)b(2)|, . . . , |a(1)b(p)|, |a(2)b(1)|, |a(2)b(2)|, . . . , |a(p)b(p)|)

and define a 2p2-dimensional vector yi for each i = 1,2, . . . , q, such that
the first p2 components of yi are equal to sign(a(j)b(l)) · zjl and the
last p2 components are equal to sign(a(l)b(j)) · z′

lj . In this way each yi

is a vector consisting of only three possible values 0, −1, and 1, and
si =yic, for each i = 1,2, . . . , q. Applying Theorem 3.2, we conclude that
q =O(2p2 log(2p2))=O(p2 log p).

Combining the above two theorems, it is immediate to obtain the follow-
ing theorem that improves Radzik’s estimate.

THEOREM 3.5 The Newton type method applied to an LFCO problem
finds the optimal solution in O(p2 log p) iterations.

As explained before, this estimate of time complexity is also available to
our method in Section 2.

4. Conclusion

In this paper, we propose a weakly dominant relationship and study an
inverse model to make a given set become a weakly dominant set. Under
weighted l∞ norm, we prove that the inverse model can be solved by a
Newton type method which has the same convergent properties as what
Radzik’s algorithm has for LFCO problems. We also present an improved
complexity bound for Radzik’s algorithm.

In the end, we like to note that under the ordinary l∞ norm in our
inverse model, i.e. all p(e) = 1, it is not difficult to show that our algo-
rithm in Phase 2 needs at most O(max{|F | | F ∈ F}) iterations, and the
total complexity to solve the model is O(A(log(E)+max{|F | | F ∈F})).

Acknowledgement

The authors thank Professor M. Cai (the Science Academy of China) for
his very helpful suggestion in revising the paper.

References

1. Burton, D., Pulleyblank, W. R., and Toint, Ph. L. (1997), The inverse shortest paths
problem with upper bounds on shortest paths costs, Network Optimization, (Gainesville,
FL, 1996), Springer, Berlin, 156–171.

CLASS OF INVERSE DOMINANT PROBLEMS 567

2. Burton, D. and Toint, Ph. L. (1992), On an instance of the inverse shortest paths prob-
lem, Mathematical Programming, 53, 45–61.

3. Fekete, S. P., Hochstattler, W., Kromberg, St. and Moll, Ch. (1999), The complexity of
an inverse shortest paths problem, Comtemporary Trends in Discrete Mathematics, Amer-
ican Mathematical Society, Providence, RI, 113–127.

4. Fredman, M. L. and Tarjan, R. E. (1987), Fibonacci heaps and their uses in improved
network optimization algorithms, Journal of the ACM, 34, 596–615.

5. Heuberger, C. (2004), Inverse optimization, a survey on problems, methods, and results,
Journal of Combinatorial Optimization, 8, 329–361.

6. Megiddo, N. (1983), Applying parallel computation algorithms in the design of serial
algorithms, Journal of the Association on Computing Machinery, 30, 852–865.

7. Megiddo, N. (1979), Combinatorial optimization with rational objective functions,
Mathematics of Operations Research, 4, 414–424.

8. Radzik, T. (1993), Parametric flows, weighted means of cuts, and fractional combinato-
rial optimization. In Pardalos P.M. (ed.) Complexity in Numerical Optimization, World
Scientific Publishing Co, pp. 351–386.

9. Zhang, J. Z. and Lin, Y. X. (2003), Computation of the reverse shortest-path problem,
Journal of Global Optimization, 25, 243–261.

10. Zhang, J. and Liu, Z. (2002), A general model of some inverse combinatorial optimi-
zation problems and its solution method under l∞ norm. In Journal of Combinatorial
Optimization, 6, 207–227.

11. Zhang, J. and Liu, Z. (2002), An oracle-strongly polynomial algorithm for bottleneck
expansion problems. In Optimization Methods and Software, 17, 61–75.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

